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OVERVIEW

Start: October 1, 2014

End:   Sept. 30, 2018

Percent complete:  94%

Timeline
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Budget

 Total project funding: 

FY17  $4.0M

BAT252, BAT253, and BAT254

(ANL, NREL, ORNL, LBNL)

Barriers
Development of PHEV and EV 

batteries that meet or exceed DOE 

and USABC goals

– Cost 

– Performance 

– Safety

 Oak Ridge National Laboratory

 National Renewable Energy 

Laboratory

 Lawrence Berkeley National   

Laboratory

 Argonne National Laboratory

Partners



PROJECT OBJECTIVES - RELEVANCE

 High-performing, high-energy, safe and long-life batteries are needed 
to reduce petroleum consumption in vehicular applications

 Performance targets of plug-in electric vehicle (PEV) and electric 
vehicle (EV) batteries can be met by cells containing layered-oxide-
based positive electrodes 

 To achieve the energy and power density targets, cells with these 
electrodes must be cycled to voltages that exceed 4.5 V vs. Li/Li+

On extended cycling at these voltages, capacity loss, impedance rise 
and voltage fade reduce the cell’s energy and power output

Our goal is to examine the mechanisms associated with this loss in 
performance and to develop cell chemistries that enable operation 
over the 15 y life target set by the DOE-OVT

Energy and Power loss during calendar-life and
cycle-life aging limits the commercial viability of
lithium-ion cells for transportation applications
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APPROACH

 Identify additives, which when incorporated into our baseline electrolyte (Gen2), 

consisting of 1.2M LiPF6 in EC:EMC (3:7 w/w), reduces cell degradation

– Provide an understanding of electrolyte-additive mechanisms through closely-

coupled experimental and computational techniques

 Characterize the behavior of fluorinated solvents, which are stable at high potentials 

(oxidation resistant) but not stable at the graphite anode (easily reduced)

– Examine effect of highly fluorinated electrolyte on the impedance rise and 

capacity retention of NMC/graphite full cells using “preformed” graphite anodes

 Develop a fundamental understanding of gas generation and reactivity in the high 

energy high voltage cells. Insights will allow better control over SEI/CEI chemistry, 

improve interfacial stability, and minimize impedance rise.

– Use FTIR and GC-MS to characterize gas composition in situ and ex situ.

 Formulate experiments to examine the various crosstalk processes during cycling

– Identify effects of transition metals in the electrolyte on cell performance

 Advance understanding of mechanisms leading to cell impedance rise

– Is impedance rise affected by the type of anode in the cell? 
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Multi-institutional effort to identify and solve performance loss 
problems in the high energy high voltage cells



WHAT WE KNOW ABOUT CELL PERFORMANCE LOSS
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Layered oxide-graphite cells: Instabilities at both electrodes

Technical Accomplishments and Progress

NMC/Gr cells cycled at high 

voltage lose capacity and power 

capability (impedance rise) with 

increasing cycle number

After cycling, extracted electrodes 

have not lost capacity  Capacity 

loss is due to Li-trapping (in SEI), 

not material degradation.

Extracted electrodes from aged 

cells indicate that impedance 

rise is from processes at the 

cathode-electrolyte interface
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ELECTROLYTE ADDITIVES ALTER CELL PERFORMANCE
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Large datasets generated even from testing 16 different electrolyte 
chemistries. How to identify chemistries that outperform the baseline?

Differential capacity plots: 1st charge Discharge capacity vs. cycle number ASI vs. V as a function of aging

Technical Accomplishments and Progress

Gen2 electrolyte (EC:EMC (3:7 w/w) + 1.2 M LiPF6) data shown in grey in all plots
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Label Formulation Label Formulation

24 Baseline 41 0.5 VC & 1.0 TMSPa 

40 1.0 VC & 1.0 TMSPi 38 1.0 TMSPi (2 wk old)

39 0.5 VC & 1.0 TMSPi 37 1.0 TMSPa 

35 Lit Sep + 1.0 TMSPi (1 wk old) 36 1.0 TMSPi (3 wk old)

34 1.0 TMSPi (1 wk old) 33 2.0 FEC & 1.0 TMSPi (1 wk old)

32 1.0 TMSPi 28 1.0 VC & 2.0 TMSPi 

31 0.2 tVCBO & 1.0 TMSPi 27 1.0 VC & 1.0 TMSPi (1 wk old)

30 2.0 VC & 1.0 TMSPi 26 0.25 tVCBO & 1.0 TMSPi (symm)

29 0.5 VC & 1.0 TMSPi & 0.5 TEPi 25 10.0 TMSPi (1 wk old)

22 Lit Sep 23 0.25 PBE & 1.0 TMSPi 

19 1.0 VC & 0.5 TMSPi 21 0.25 tVCBO 

16 0.5 TMSB 20 1.0 PES & 1.0 TMSPi 

15 1.0 TEPi 18 2.0 VC & 1.0 TEPi 

12 2.0 PES & 1.0 LiDFOB 17 2.0 VC & 1.0 TMSPi & 1.0 DME 

11 1.0 LiBOB & 2.0 LiDFOB 14 1.0 VC 

8 1.0 TMSB 13 1.0 VC & 1.0 TEPi 

3 0.25 PBE & 1.0 TEPi 10 1.0 LiBOB & 1.0 TEPi 

2 1.0 PES & 1.0 TEPi 9 1.0 LiBOB & 1.0 TMSPi 

1 0.3 PCl3 7 0.25 tVCBO & 2.0 LiDFOB 

6 2.0 VC & 2.0 LiDFOB 

5 0.25 tVCBO & 1.0 TEPi 

4 0.25 PBE & 2.0 LiDFOB 

Technical Accomplishments and Progress

The Gen2 + 1wt% TMSPi (1 wk old) electrolyte 

shows the highest Power FOM of the 40 

different formulations studied. 

Green formulations are 

better than the baseline



TMSPi ADDITIVE: “ELECTROLYTE AGING” MATTERS!
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Technical Accomplishments and Progress

Lowest impedance rise for cells with “1-week old” electrolyte

Gen 2 electrolyte (EC:EMC (3:7 w/w) + 1.2 M LiPF6) 

data shown for comparison (grey in all plots)

NMC532/Gr, 3-4.4 V w/ 3h hold at 4.4 V

Electrolyte:  Gen 2 + 1 wt% TMSPi 

Observations
Impedance rise is lower than 
Gen2 electrolyte for freshly-
prepared electrolyte w/TMSPi.
The 1-week old electrolyte 
shows the slowest rise.  Further 
aging increases cell impedance.

Key Takeaway
Additives can react with the 
baseline electrolyte to form 
compounds that have beneficial 
or detrimental effects on cell 
performance and aging.

HPPC data

2C, 10s discharge pulse

Aging period indicated in plots



9

TTFP: 

1. is oxidatively unstable, 

2. does not passivate cathode surface, and

3. leads to higher impedance of the cathode.

Aging protocol
Leakage current vs. 

TTFP concentration

ELECTROCHEMICAL BEHAVIOR OF TTFP ADDITIVE
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Technical Accomplishments and Progress
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TTFP OXIDIZES TO TTFPa AND FURTHER REACTS 
WITH ELECTROLYTE TO FORM SOLUBLE SPECIES
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Technical Accomplishments and Progress See BAT253



FLUORINATED ELECTROLYTES ARE STABLE AT  HIGH 
VOLTAGE – EFFECT ON NEGATIVE ELECTRODE SEI? 

How can we investigate stability on the graphite electrode?
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Technical Accomplishments and Progress



GRAPHITE PREFORMED WITH FE-3 ENHANCES 
BASELINE ELECTROLYTE PERFORMANCE
Baseline Gen2 electrolyte shows better stability in both cycling and 
impedance rise when paired with FE-3 preformed graphite
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Technical Accomplishments and Progress



IMPEDANCE EVOLUTION IN THE LAYERED-OXIDE 
CATHODES IS AFFECTED BY THE ANODE TYPE

Technical Accomplishments and Progress

CAMP Electrodes, Gen2 electrolyte

Potential hold at Upper Cutoff Voltage 

NMC811/Gr (Positive at ~4.5 V during hold) 

NMC811/LTO (Positive at ~4.5 V during hold) 

NMC811/LTO (Positive at ~4.0 V during hold) 

Observations

Impedance rise at positive electrode is 

greater for cells with Li4Ti5O12

Impedance rise at positive electrode is 

minimal when hold potential is 4.0 V

Postulated Mechanism

Accumulation of gases in cells responsible 

for impedance rise

Related to gas generation at positive and 

depletion at negative electrode (crosstalk) 

P

N

S

Impedance data (HPPC, EIS) on 

full cell and individual electrodes 

can be obtained using this 

Reference Electrode setup   

S

LixSn



SIGNIFICANT GAS EVOLUTION IN HIGH VOLTAGE 
NMC811//GRAPHITE (POUCH) CELLS 
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Gas volume measured by the Archimedes method. Cycle 0 is after 4 
formation cycles and degassing.

Technical Accomplishments and Progress

• Minimal gas generation in 3.0-4.2 V 
cycling window

• Significant gas generation in 3.0-4.4 V 
cycling window during the early cycles; 
gas depletion during the later cycles.

• VC, TMSPi, FEC additives (2 wt.%) 
change the gassing behavior.

• Additives lower gas evolution during the 
early cycles relative to Gen2 electrolyte.

• TMSPi additive also lowers impedance 
growth, confirming previous results.



AEGIS – ANALYSIS OF ELECTROCHEMICAL GASSING BY 
INFRARED SPECTROSCOPY

15

Probes the gas phase continuously with IR spectroscopy in a batch 
mode without drying out the cell

Light path 

optimized for IR

Reactor large enough 

to probe a 5 Ah battery

Technical Accomplishments and Progress

Key Observations: FTIR and GC-MS
‒ CO2, CO, alkanes, and ethers are the 

main gases in NMC811//Gr cells.
‒ CO2 decreases with cycling; possible 

consumption at the anode (crosstalk)
‒ Alkanes (methane, ethane) build up 

during cycling.



NICKEL-RICH CATHODE MAINLY RESPONSIBLE FOR 
GAS GENERATION AND IMPEDANCE RISE 

Symmetric Gr//Gr and NMC811//NMC811 pouch cells isolate gas 
formation and impedance growth at the anode and the cathode. 

16

0 20 40 60 80 100

-50

0

50

100

150

200

250

G
a
s
 (


m
o
l/
g

g
ra

p
h

it
e
)

G
a
s
 (


m
o
l/
g

N
M

C
)

Cycle Number

-50

0

50

100

150

200

250

 

• Continuous gas (e.g. CO2) generation 
in NMC-811 cell on cycling

• Gas (e.g. CH4, C2H4, C2H6) generated 
in Gr cell is consumed on cycling

Impedance increase of NMC-811 
cell is significantly larger than the 
increase for the symmetric Gr cell

Technical Accomplishments and Progress

NMC-811//NMC-811 
symmetric pouch cell 
2.5-4.5 V vs. Li/Li+

Gr//Gr symmetric 
pouch cell
0.6-0.075 V vs. Li/Li+

Archimedes method EIS data



Mn IN ELECTROLYTE ACCELERATES CELL CAPACITY 
FADE (Li+ TRAPPING IN ANODE SEI )

Cell capacity is affected by the nature of the anions
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PF6: Continual capacity loss
Acac: Initial and continual capacity loss
TFSI: Initial capacity loss

Technical Accomplishments and Progress
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SPIKED ELECTROLYTES: Mn SALT IN GEN2

Characterization techniques employed to determine the chemical 
and electrochemical mechanisms of the various Mn environments
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Technical Accomplishments and Progress



SUMMARY

 Developed Energy and Power Figure of Merit (FOM) criteria to identify additive systems that 

outperform the baseline (Gen2) electrolyte

– Several additive combinations outperformed the baseline electrolyte i.e., had higher 

Energy FOM (better capacity retention) and Power FOM (lower impedance rise)

 Additives can react with the baseline electrolyte to form compounds that have beneficial or 
detrimental effects on cell performance and aging
– Cells with the Gen2 + 1wt% TMSPi electrolyte, aged for 1 week, displayed the lowest 

impedance rise. Further aging generates products that raise cell impedance.

 Evaluated stability of graphite SEI’s formed by both a highly fluorinated electrolyte (FE-3) 

and Gen2 baseline electrolyte

– Graphite preformed with FE-3 shows substantially higher capacity retention, coulombic 

efficiency, and impedance rise than graphite preformed with the Gen2 electrolyte, 

indicating that anode to cathode crosstalk is a contributor to cathode impedance rise

 Gas generation in NMC811//Gr cells charged to >4.2 V is significant and correlates strongly 

with impedance rise and capacity fade.

– Most gas evolution and impedance rise occur at cathode in NMC811//Gr cells. Common 

electrolyte additives can significantly reduce gas evolution and impedance rise in high 

voltage NMC811//Gr cells. 

 FTIR combined with a custom-built reactor provides a non-destructive, non-invasive method 

to study gas evolution in high energy cells. 

– Large-format pouch cells can be studied in situ without “electrolyte drying” complications

19
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FUTURE WORK AND WORK IN PROGRESS

 Connect the impact of additives on cell performance to fundamental changes in 

surface chemistry and gas evolution behavior

– Mechanisms that explain the effect of these additives will be obtained using 

experimental and computation techniques

 Continue to develop FTIR and GC to monitor gas generation in situ

– Work in progress to identify gas and molecular changes during cycling

 Understand the impact of gas crossover and reactivity on SEI/CEI chemistry and 

interfacial stability

– Intentionally introduce reactive gases into cells to control the interface  

 Mn dissolution from NMC oxide contributes to cell performance degradation

– Electrolytes spiked with Mn salts and electrolytes extracted from LiMn2O4-

cycled cells will be evaluated in electrochemical cells

– Characterization and post-test analysis will be conducted on electrodes after 

cycling with Mn-containing electrolytes

 Continue development of symmetric cell methodology for diagnostic analysis

– Data from such cells are valuable to highlight the effect of crosstalk during 

electrochemical cycling of full cells 

Any proposed future work is subject to change based on funding levels.
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RESPONSE TO PREVIOUS YEAR REVIEWERS’ COMMENTS

Five reviewers commented on our presentation. We are grateful for 

their thoughtful comments. Selected excerpts are given below.

 The reviewers’ comments were generally positive.

– “computational and experimental approach is very well designed”

– “integrated well with the other team’s efforts”

– “important insights regarding reactions at surfaces of positive and negative electrodes”

 One reviewer indicated that the mechanisms for surface reactions is the novel portion of the 

work. We agree. Possible surface interactions were probed using closely coupled 

experimental and computational techniques to determine how functional groups on electrolyte 

additives influence electrode electrochemical performance and passivation behavior (refer 

Peebles 2017).

 Another reviewer affirmed the great progress in understanding effects of electrolyte additives 

on cell impedance and suggested the use of surface techniques to better understand the role 

of these additives. We agree and point to the use of XPS and SIMS in our experimental 

efforts. In the past year we have published two articles on mechanisms on some of the 

additives surveyed in last year's report, including an in-depth analysis of changes to the 

electrolytes and surfaces with electrolyte aging before use (refer Peebles, 2018).

 One reviewer asked about the “effects of varying the percentage of additives in the matrix”.  

We have conducted studies that examine this effect. As an example, for a promising 

combination of additives (VC and TMSPi), a regression model was developed to fit the 

experimental data in order to obtain an optimized electrolyte formulation (see Sahore 2017).



TECHNICAL BACKUP SLIDES
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FIGURE OF MERIT (FOM) METHODOLOGY
Energy FOM and Power FOM defined

Technical Accomplishments and Progress
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ELECTROLYTE ADDITIVES FOR THE NEGATIVE 
AND POSITIVE ELECTRODES
Selection rationale based on information in the research literature 
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Negative additive Structure Wt %

2,4,6-

trivinylcyclotriboroxane 

(tVCBO)

0.25

Prop-1-ene-1,3-sultone 

(PES)
2.0

Phenyl boronic acid 

ethylene glycol ester 

(PBE)

0.25

Lithium bis(oxalato)borate 

(LiBOB)
1.0

Vinylene carbonate

(VC)
2.0

Positive additive Structure Wt %

Lithium 

difluoro(oxalate)borate 

(LiDFOB)

2.0

Tris(trimethylsilyl) 

phosphite

(TMSPi)

1.0

Triethyl phosphite

(TEPi)
1.0

Could these compounds help form a 

robust SEI and lower capacity fade?

Could these compounds “protect the 

oxide” and lower impedance rise?



SYMMETRIC CELLS ISOLATE REACTIVE GASES.
GC-MS of symmetric Gr//Gr and NMC811//NMC811 pouch cells 
provides evidence for cross-talk.
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Technical Accomplishments and Progress

‒ Alkenes generated at the anode react at the cathode. 
‒ CO2 and fluorocarbons generated at the cathode react at the anode.




